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Abstract
We discuss the possibility of interpreting a q-deformed non-interacting system
as incorporating the effects of interactions among its particles. This can be
accomplished, for instance, in an ensemble of q-Boson by means of the virial
expansion of a real gas in powers of the deformed parameter. The lowest-
order virial coefficient reduces to the case of the standard, non-interacting
Bose gas, while the higher-order virial coefficients contain effects arising from
the interaction. The same picture can be drawn in a quantum-mechanical
system where it is shown that the q-deformed momentum can be expanded
in a series containing high-order powers of the standard quantum phase-space
variables. Motivated by this result, we introduce, in the classical framework,
a transformation relating the momentum of a free system to the momentum of
an interacting system. It is shown that the canonical quantization applied to
the interacting system implies a q-deformed quantization for the free system.

PACS numbers: 05.30.−d, 05.70.Ce, 05.90.+m, 02.20.Uw

1. Introduction

The earliest studies to develop a new realization of the quantum group SUq (2) are perhaps those
of Biedenharn and Mcfarlane [1, 2]. This construction, which is now a standard procedure in
the literature, is based on the following algebra describing a q-Boson oscillators system

ãã† − qã†ã = 1, [ã, ã] = 0, [ã†, ã†] = 0,

[N, ã] = −ã, [N, ã†] = ã†,
(1.1)

where q is a real deformation parameter. The q-Boson Hamiltonian operator is H =
1
2ω(ã†ã + ãã†) (hereinafter we use units with h̄ = 1), where eigenvalues En = 1

2ω([n + 1] +
[n]) are expressed in terms of the basic numbers [n] = (qn −1)/(q −1) and the Fock space of
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the q-Boson states is constructed according to |n〉 = (1/
√

[n]!)(a†)n|0〉, where the q-factorial
is given by [n]! = [n][n − 1] · · · [1], when non-zero.

Starting from the above formalism, the statistical mechanics of a q-Bosons gas has
been investigated rather extensively in the literature [3–7]. Recent studies on the nature of
the thermodynamics as well as properties relating to the algebra and Heisenberg’s equation of
motion have been worthwhile [8]. More recently, specific topics relating to the thermostatistics
of q-deformed Boltzmann, Bose and Fermi systems have been investigated in detail [9, 10].
These studies have not only established detailed results for the thermostatistical properties of
ideal q-Bosons and q-Fermions systems, but they have also illustrated how the deformation of
classical systems can be described by means of the q-exponential functions and the concomitant
Fokker–Planck equation [11]. In addition, the study of q-Bosons and q-Fermions is particularly
instructive since it has been shown that the q-calculus based on the Jackson derivative can be
successfully used to modify standard thermodynamic relations in such a way that the theory
of these ideal q-deformed systems can be formulated in a self-consistent manner.

Moreover, classical systems described by the q-deformed Poisson bracket has been
investigated [12] in order to understand the origin of the deformed structure from the underlying
dynamics governing some complex systems.

Having accomplished a great deal of understanding of the q-deformed systems revealed by
recent investigations, we may ask the question whether there are simple physical descriptions
of what constitutes a deformation. In other words, it is worthwhile to ask if there are simple
manifestations of q-deformation and what are the physical basis of such manifestations. It
has been observed in [13] that interacting Bosons gas can be described by a Hamiltonian
containing various powers of the operators a and a†, where the lowest-order non-interacting
Hamiltonian contains only one pair of these operators. Furthermore, we can learn from a
study of non-ideal gases (see, for instance, [14]) that the state equations of interacting particle
systems are well described by means of the virial expansion in terms of higher orders by
powers of the number of particles, where the Van der Walls approximation is given by the first
two terms in the series.

Therefore, the power series expansion is a convenient tool to describe interacting
systems, with the lowest-order representing the system of non-interacting particles in the
ensemble. Unfortunately, very few authors have examined this issue. An exception is given
by Parthasarathy and Viswanathan [15] who have developed an interesting interpretation
of the origin of the q-deformation in an interacting particles system. In fact, it is shown
that many thermodynamic quantities of a q-Bosons system can be expressed as a power
series in powers of N or in series of the deformed parameter ε = q − 1, implying that the
q-deformation arises from the interaction among the particles of the ensemble. More precisely,
while the zeroth order describes the undeformed (non-interacting) system, the higher-order
terms contain various powers of ε which are equivalent to different order contributions arising
from interactions.

Similar considerations have been presented also in [16], where the perturbative aspects of
the q-deformed Schrödinger equation are analyzed by means of a high-order momentum-
dependent interaction originating from the underlying q-deformation of the Heisenberg
algebra.

In this paper, we shall highlight some aspects concerning the possible interpretation of a
q-deformed non-interacting system describing a non-deformed interacting system.

The plan of the paper is as follows. In section 2, we present some results to illustrate
the idea that q-deformation can originate from the presence of an interaction in the system.
This is better clarified in section 3, where we study an interacting Bosons system by means of
the virial expansion of a free q-Bosons system. In section 4, we illustrate the same idea for a
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quantum-mechanical system, by revisiting the q-deformed Heisenberg algebra. We write down
the q-deformed momentum in a series of the standard quantum space-phase variables where
the high-order contributions originate from the presence of the interaction into the system.
The equivalence of q-deformation and interaction for a mechanical system is discussed in
section 5 by introducing a contact transformation which relates the classical counterpart of the
canonical quantum momentum (describing an interacting system) to the classical counterpart
of the deformed quantum momentum (describing a free system). As a consequence, it is
shown that the canonical quantization (à la Dirac) applied to the interacting system implies a
q-deformed quantization of the free system. Section 6 contains a conclusive discussion.

2. Preliminary results

We consider a system of interacting particles described by the q-oscillator algebra, expressed
for a one-level system through equation (1.1), where q implements the deformation of the
system. The theory of such q-Bosons introduces the basic number according to

[N ] = qN − 1

q − 1
, (2.1)

where N is the number operator, in order to describe the Fock space of the particles.
Hereinafter, we take q > 1 without loss of generality and we set ε = q − 1, with ε � 1.

Thus, the expression of the basic number is written as

[N ] = ε−1[(1 + ε)N − 1], (2.2)

which can be expanded in a series of powers of N according to

[N ] =
(

1 − ε

2
+

ε2

3
− ε3

4
+ · · ·

)
N +

ε

2!

(
1 − ε +

11

12
ε2 − · · ·

)
N2

+
ε2

3!

(
1 − 3

2
ε + · · ·

)
N3 + O(N4). (2.3)

This result, in agreement with the interpretation advanced in [15], shows that the quantity
[N ] incorporates thermal averages of N,N2, N3, etc. Further inspection reveals that the
contributions from interaction can be viewed either in terms of N,N2, N3, etc. or in
terms of ε, ε2, ε3, etc. In fact, by interpreting the contributions arising from interactions by
means of terms containing higher powers of the deformation parameter ε, we can rewrite the
series (2.3) in the following form:

[N ] =
∞∑
i=0

εi

(i + 1)!

i∏
j=0

(N − j)

= N +
ε

2!
N(N − 1) +

ε2

3!
N(N − 1)(N − 2) + O(ε3), (2.4)

so that, we may regard the above series as describing the interaction among the particles
of the system: the ε → 0 limit describes the non-interacting particles corresponding to an
undeformed gas, while the higher-order terms describe the various orders of interaction. In
this way, we can interpret the system of interacting particles as a q-deformed free gas.

Next, we consider the standard form of the Hamiltonian for the q-Bosons

Hε = 1
2ω([N + 1] + [N ]), (2.5)

reducing to the usual Hamiltonian H0 = ω(N + 1/2) when ε goes to zero. This Hamiltonian
follows directly from the q-deformed oscillator algebra, with the standard representation
[N ] = a†a and [N + 1] = aa†.
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The alternative form Hε = ω([N ] + 1/2) is also commonly used [17], but that is certainly
an approximation [18].

Hamiltonian (2.5) can be expressed as

Hε = ω

[
1

2
+

(
1 +

ε2

12
− ε3

12
+ · · ·

)
N +

ε

2

(
1 − ε

2
+

5

12
ε2 − · · ·

)
N2

+
ε2

6
(1 − ε + · · ·) N3

]
+ O(N4), (2.6)

which can be rearranged in a series containing higher powers of the deformation parameter
according to

Hε = H0 + ω

∞∑
i=1

εi (2N + 1 − i)

2(i + 1)!

i−1∏
j=0

(N − j). (2.7)

The first term H0, surviving in the limit ε → 0, is the undeformed Hamiltonian
corresponding to the non-interacting case, whilst the higher-order terms are interpreted as
arising from interaction.

Finally, for completeness, let us consider the following transformation:

ã = â

√
[N ]

N
, (2.8)

and similarly for ã†, where â and â† are the undeformed generators obeying the ordinary SU(2)
algebra. As is well known [19, 20], this transformation maps the q-algebra (1.1) onto the
standard algebra of a non-interacting Bosons system. By expanding equation (2.8) in power
series, thus one obtains

ã = â

[
1 +

ε

4
(N − 1) − ε2

96
(N − 1)(5N + 3) +

ε3

384
(N − 1)(N − 5)(3N − 7) + O(ε4)

]
,

(2.9)

which shows the equivalence of the two operators ã and â at the zeroth order. Again, the high-
order terms can be interpreted as a correction to â arising from the presence of the interactions
in the system of non-interacting Bosons.

3. The virial expansion in the q-Bosons system

A good illustration of the idea that a q-deformed non-interacting many-body system can be
interpreted as describing a non-deformed interacting system can be provided by studying the
virial expansion of a q-Bosons ensemble although this idea can also be investigated starting
from other physically relevant quantities. For instance, one could consider the probability
distribution function for a q-Bosons system, derived in [10], as

n = 1

ln(1 − ε)
ln

(
y

y − ε

)
, (3.1)

where y = z−1 eβE − 1 and z = eβµ is the fugacity of the gas. By expanding this quantity in
a power series, one obtains

n = 1

y
+

ε

2y

(
1 +

1

y

)
− ε2

12y

(
1 +

1

y

) (
1 − 4

y

)
+

ε3

24y

(
1 +

1

y

)(
1 − 2

y
+

6

y2

)
+ O(ε4),

(3.2)
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where the first term corresponds to the mean occupation number of the standard Bose statistics,
whilst the higher-order terms represent interaction contributions. We may thus interpret the
above as the average occupation number of an interacting ensemble of Bosons.

Most results derived in a thermostatisics theory based on the q-calculus involve generalized
functions such as g̃3/2(z, ε) or g̃5/2(z, ε). These functions are generalizations of the well-
known functions g3/2(z) or g5/2(z) arising in the standard thermostatistics of a Bosons gas
and can be taken as typical of what comes out in the deformed theory which we are now
interpreting as a consequence of the interaction among the many-body system.

We start from the following result derived in [10]

g̃3/2(z, ε) = λ3

v
, (3.3)

where v = V/N is the specific volume, λ = h/(2πmkT )
1
2 is the thermal wavelength and

g̃3/2(z, ε) = 1

ln(1 + ε)

∞∑
k=1

zk

k5/2
[(1 + ε)k − 1]. (3.4)

Expanding this function in a power series, we obtain the result

g̃3/2(z, ε) = z

(
1 +

z

2
√

2
+

z2

3
√

3
+ · · ·

)
+

z

2

(
1 +

z√
2

+
z2

√
3

+ · · ·
)

ε

− z

12

(
1 − z√

2
−

√
3z2 + · · ·

)
ε2 +

z

24

(
1 +

z2

√
3

+ · · ·
)

ε3 + O(ε4). (3.5)

Note that the zeroth-order term is the familiar g3/2(z) function encountered in standard Bose
statistics [21] whilst the higher-order terms can be interpreted as describing contributions from
interactions.

In a similar way, we can consider the equation of state for a q-Bosons system [10]

g̃5/2(z, ε) = λ3P

kT
, (3.6)

where the function

g̃5/2(z, ε) = 1

ln(1 + ε)

∞∑
k=1

zk

k7/2
[(1 + ε)k − 1], (3.7)

has the following power series expansion:

g̃5/2(z, ε) = z

(
1 +

z

4
√

2
+

z2

9
√

3
+ · · ·

)
+

z

2

(
1 +

z

2
√

2
+

z2

3
√

3
+ · · ·

)
ε

− z

12

(
1 − z2

2
√

2
− z3

√
3

+ · · ·
)

ε2 +
z

24

(
1 +

z2

3
√

3
+ · · ·

)
ε3 + O(ε4). (3.8)

Again, the zeroth-order term coincides with the known function g5/2(z) of the standard
statistical mechanics, whilst the higher-order terms can be interpreted as describing
contributions from interactions.

From results (3.5) and (3.8) we can obtain the following virial expansion:

Pv

kT
=

∞∑
k=1

ak(ε)

(
λ3

v

)k−1

, (3.9)

where the virial coefficients ak(ε) describe the equation of state of an interacting Bosons system
or, equivalently, they describe the equation of state of a q-deformed system of non-interacting
Bosons. The first few terms are as follows:

5
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a1(ε) = 1, (3.10)

a2(ε) = − 1

4
√

2
− 1

48
√

2
ε2(1 − ε) + O(ε4)

= −0.176 78 − 0.014 73ε2 + 0.014 73ε3 + O(ε4), (3.11)

a3(ε) = −
(

2

9
√

3
− 1

8

)
−

(
1

18
√

3
− 1

48

)
ε2(1 − ε) + O(ε4)

= −0.003 30 − 0.011 24ε2 + 0.011 24ε3 + O(ε4), (3.12)

a4(ε) = −
(

3

32
+

5

32
√

2
− 1

2
√

6

)
−

(
3

64
+

5

128
√

2
− 1

6
√

6

)
ε2(1 − ε) + O(ε4)

= −0.000 11 − 0.006 45ε2 + 0.006 45ε3 + O(ε4). (3.13)

(We may note that the first coefficient is exact since it does not contain any corrections).
It is readily observed that when ε → 0 we recover the virial coefficients of the ordinary

(undeformed) non-interacting Bosons system, as shown in standard textbooks [21]. The
higher-order terms arise from the deformation, i.e. we may regard the deviations from the
values of the ordinary Bosons system as indicating the presence of such an interaction among
the particles of the system.

4. Heisenberg algebra and q-deformed momentum

We may further develop the idea of the equivalence among deformation and interaction by
considering a quantum-mechanical system.

As is known, a (non-Hermitian) realization of algebra (1.1) is provided by means of the
q-deformed Bargmann–Wigner holomorphism, given by ã ≡ x and ã† ≡ Dx , where Dx is the
Jackson derivative [22], defined in

Dx = 1

x

Dq − 1

q − 1
, (4.1)

with

Dq = qx∂x , (4.2)

the dilatation operator

Dqf (x) = f (qx)Dq . (4.3)

According to the q-algebra (1.1), by taking into account the relation [N + 1] = q[N ] + 1, we
can derive the following solution [23, 24]:

[N ] = xDx, (4.4)

so that the q-Boson number operator can be defined as N = x∂x (see equation (4.1)).
With the purpose of consistently introducing a quantum mechanics theory based on the

q-calculus, it has been suggested by several authors (see, for instance, [25–27]), to replace the
quantum momentum operator p̄ = −i∂x with a q-deformed version given by P̃ = −iDX̃.

In this way, algebra (1.1) can be written formally in the form

qX̃P̃ − P̃ X̃ = i, (4.5)

with X̃ ≡ x the position operators, which reduces to the standard Heisenberg algebra in the
q → 1 limit.

6
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Despite this nice result a certain prudence is indeed required. In fact, while p̄ is a
Hermitian operator and can be identified with a physical observable, the same is not true
for the quantity P̃ which is not Hermitian. Thus, a physical observable corresponding to a
q-deformed momentum p̃ [28, 29] must be introduced according to a certain procedure such
that p̃ = p̃† = f (P̃ , P̃ †).

To do this, we first observe that the ordinary commutation among the operators X̃ and P̃

reads as

X̃P̃ − P̃ X̃ = iDq . (4.6)

Of course, equations (4.5) and (4.6) represent the same algebra, as can be verified by employing
the relation Dq = 1 + i(q − 1)X̃P̃ .

On the other hand, let us consider the Hermitian conjugate of this last equation, given by

X̃P̃ † − P̃ †X̃ = i(qDq)
−1, (4.7)

since D†
q = (qDq)

−1 and we assumed X̃ = X̃†. By matching equation (4.5), multiplied on
the left-hand side by the operator (qDq)

−1 that can be written as

X̃(qDq)
−1P̃ − (qDq)

−1P̃ X̃ = i(qDq)
−1, (4.8)

with equation (4.7), it is natural to define

P̃ † = (qDq)
−1P̃ , with (P̃ †)† ≡ P̃ . (4.9)

Accordingly, one introduces the Hermitian operator

P̃ = 1
2 (P̃ + P̃ †), (4.10)

which can be identified with the right q-deformed version of the quantum momentum.
After rescaling the position operator, according to x̃ = 2qX̃/(1 + q), algebra (4.5) can be

finally written as

q1/2x̃p̃ − q−1/2p̃x̃ = i�q, (4.11)

where the operator �q = q−1/2D−1
q fulfills the further relations

�qx̃ = q−1x̃�q, �qp̃ = qp̃�q. (4.12)

Equations (4.11) and (4.12) establish the q-deformed Heisenberg’s algebra for the phase-space
quantum variables x̃ and p̃, as known in the literature [28, 29].

We can now consider a power series expansion for p̃. To do this, we collect together
equations (4.1), (4.9) and (4.10) to obtain

p̃ = − i

2X̃

Dq − D−1
q

q − 1
≡ − i

x̂

q ix̂p̂ − q−ix̂p̂

q − q−1
, (4.13)

with x̂ ≡ x̃, p̂ = −i∂x̂ , which can be written in the following compact form:

p̃ = p̂
[ẑ]s

ẑ
, (4.14)

where ẑ = ix̂p̂ and [ẑ]s = (qẑ −q−ẑ)/(q −q−1) is the symmetric version of the basic number.
Relation (4.13) is equivalent to that derived in [28] and successively reconsidered in [16]. It
plays the same role as transformation (2.8) and relates the q-deformed operators x̃ and p̃,
fulfilling the generalized Heisenberg’s algebra (4.11), to the standard operators x̂ and p̂ which
satisfy the undeformed algebra [x̂, p̂] = i.

By expanding equation (4.13) in a series of ε = q − 1, we obtain

p̃ = p̂
[
1 − 1

6 (1 + x̂p̂x̂p̂)ε2(1 − ε)
]

+ O(ε4), (4.15)

in accordance with the results reported in [16]. Again, the higher-order terms can be interpreted
as effects due to interactions, i.e. the first term corresponds to the momentum of a non-
interacting system whilst the higher-order terms arise from interactions.

7
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5. The equivalent interaction

In order to better clarify the question concerning the possible link between interaction and
deformation we are asking if there exists a simple physical indication of what constitutes a
deformation.

In this respect, we consider a classical system described by the phase-space variables
(X, P ). For a non-interacting system the energy is only kinetic, i.e. E = P 2/(2m). Afterward,
we introduce a contact transformation which changes the momentum P → p ≡ p(X,P ) but
leave unchanged the coordinate X → x ≡ X. In the new phase-space variables (x, p), the
energy of the system can be written, without loss of generality, as E = p2/(2m) + Uα(x, p)

that contains now the extra term Uα(x, p) representing an interaction potential, whose explicit
form is determined by the contact transformation we are introducing. In particular, we are
looking for a transformation able to capture the physical meaning of the q-deformation.

On the basis of the results described in the previous section, this can be realized
by introducing a transformation such that the quantum analog of the classical mapping
P → p ≡ p(X,P ) corresponds to transformation (4.13) among quantum operators.
Hereafter, we identify the quantity p̂ with the quantum operator of the momentum p (describing
the interacting system) and the quantity p̃ with the quantum operator corresponding to the
momentum P (describing the free system).

To realize such a result, we introduce the following point transformation:

x → X ≡ x, p → P = 1

x

sin(αxp)

sinh(α)
, (5.1)

which imply an interaction term of the kind

Uα(x, p) = sin2(αxp) − [sinh(α)xp]2

2m sinh2(α)x2
, (5.2)

(derived from the quantity Uα(x, p) = 1
2m

(P 2 − p2)), where α = log q is the deformed
parameter for the classical system. In the α → 0 limit equation (5.1) reduces to the identity
transformation and the potential Uα(x, p) vanishes.

It is easy to verify that, by employing the canonical quantum prescription for the
momentum p, with p → p̂ = −i∂x , we obtain a q-deformed quantum prescription for
the momentum P, with P → p̃.

In fact, from transformation (5.1), we obtain

P = sin(αxp)

x sinh(α)
→ 1

x

sin(−iαx∂x)

sinh(α)
= − i

x̂

q ix̂p̂ − q−ix̂p̂

q − q−1
= p̃, (5.3)

in accordance with transformation (4.13).
We remark that since transformation (5.1) depends on both the phase-space variables

an ordering prescription must be imposed. Consistently with the formalism adopted in the
previous section, we employed the standard prescription with the x̂ operator on the left and
the p̂ operator on the right.

An immediate consequence of this argument is that the Schrödinger equation describing
a quantum interacting system obtained from the canonical quantization of the classical system
governed by the potential Uα(x, p) (Uq(x̂, p̂) = 1

2m
(p̃2 − p̂2) in the quantum picture) is

transformed in a q-deformed Schrödinger equation describing a non-interacting quantum
system (and vice versa).

This fact follows readily from the following correspondence:

E = p̂2

2m
+ Uq(x̂, p̂) ⇔ E = p̃2

2m
. (5.4)

8
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Let us point out that the idea to introduce a deformed algebra in order to take into account
the effect of interactions is not new at all.

In fact, this is reminiscent of what was done in early quantum mechanics by Bohm and
Madelung [30], which recognize that a quantum system, described by the non-commutative
operators x̂ and p̂ acting on the ψ-function of a quantum system, behaves like a classical
interacting fluid, described by the commutative functions ρ and S, whose interaction is
described through a suitable quantum potential UBM(ρ), capable of capturing the quantum
feature arising in the Schrödinger picture.

By identifying the quantum momentum −i∂xψ in the ψ-representation with the canonical
momentum ∂xS in the ρ–S representation, the Schrödinger equation can be transformed
according to

E = − 1

2m

∂2
xψ

ψ
⇒ E = (∂xS)2

2m
+ UBM(ρ), (5.5)

(endowed by a continuity equation for the field ρ), where, the transformed equation can be
interpreted as a classical Hamilton–Jacobi-like equation for the principal Hamilton function S.

In this way, the free system in the Schrödinger picture (in the non-commutative algebraic
formalism) is transformed to an interacting classical system (in the commutative algebraic
formalism) governed by the Bohm–Madelung potential

UBM(ρ) = − 1

2m

∂xx
√

ρ√
ρ

, (5.6)

that introduces the quantum effects into the system just as potential (5.2) does with respect to
the q-deformation.

6. Conclusion and discussion

In this work we have investigated a possible interpretation of q-deformation in terms of a
physical interaction. We analyze several quantities of physical interest such as the Hamiltonian
and the occupation number of a q-Bosons system showing that all these quantities can be
expanded in a power series of the deformation parameter ε = q − 1. This leads us to
identify the zeroth-order quantities corresponding to the description of an undeformed system
and the higher-order quantities representing the contribution arising from deformation. We
can interpret the lowest-order quantities characterizing the non-interacting system whilst the
higher-order contributions arise from the presence of a kind of interaction in the system.

We investigate the virial expansion in the context of the q-Bosons system which provides
an illustration of the equivalence of the two interpretations. This equivalence arises from the
premise that statistical mechanics reveals that a theory of interacting particles, e.g., Bosons,
predicts the various virial coefficients so that the equation of state of the gas reflects the
presence of interactions in the system. Thus, we have determined explicit forms for the first
four virial coefficients which are expressed in a power series of ε and we have shown explicitly
that in the lowest order, these coefficients reduce to those of the standard Bose gas, while the
higher-order terms describe the effects of the deformation. This idea stems from a study of a
non-ideal gas, (e.g. [14]), where the equation of state of interacting systems is described well
by the virial expansion in powers of N, with the Van der Walls law being just an approximate
description provided by the first two terms in the series.

The equivalence between q-deformation and interaction has also been illustrated in a
quantum-mechanical system. The study of the q-Heisenberg’s algebra enables us to introduce
the effective momentum p̃ which can be related by a power series in the ordinary quantum
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phase-space variables x̂ and p̂. Based on this result we have considered a point transformation
P → p for the momentum of a classical system derived by requiring that the canonical
quantization rule p → p̂, for the momentum p, implies a q-quantization rule P → p̃,
for the momentum P. Accordingly, identifying the (X, P )-system with a free system and
the (x, p)-system with the interacting one we have obtained the expression of the interacting
potential Uα(x, p) responsible for the q-deformation. This means that the classical momentum
corresponding to the canonical quantum momentum (describing a suitably interacting system)
can be related to the classical momentum corresponding to the deformed quantum momentum
(describing a free system) by means of a contact transformation.

At this stage we are not able to give a physical interpretation, if any, of potential (5.2).
Notwithstanding, it is worth remarking that the idea underlying this work, to interpret the
deformations of a physics theory as representative of the interactions of the system that the
theory is describing, has also been advanced by several authors both for a quantum-mechanical
system [16] and for a statistical mechanical system [9, 32–35] and actually is applicable not
just to the q-formalism employed in this work as a simple illustrative example.

Here, we have used the q-deformed algebra, which is well known and largely applied
in physics since the beginning of the last century, in order to give an explicit demonstration
of how the method should work. There is no physical reason, a priori, to believe that
the q-deformation is the suitable deformation capable of capturing the physical information
contained in any interaction. More appropriately, one should consider a given interacting
system and then attempt to realize the corresponding algebraic deformation able to capture
the physical feature contained in it. This project however, appears to be beyond our present
scope.
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